AClass: A Simple, Online Probabilistic Classifier

Vikash K. Mansinghka
Computational Cognitive Science Group
MIT BCS/CSAIL
AClass: A Simple, Online Probabilistic Classifier

or

How I learned to stop worrying and love generative models and nonparametric Bayes

Vikash K. Mansinghka
Computational Cognitive Science Group
MIT BCS/CSAIL

Joint work with Daniel Roy, Ryan Rifkin, Joshua Tenenbaum
Outline

- The problem of classification
- Some history and parallels (cogsci and AI)
- AClass: Model and online inference
- Applications to scene analysis
- Using classical AI search ideas for probabilistic inference
Rhetorical Objectives

• Intuitive inductive biases can yield effective classifiers:
 – Prototype finding via nonparametric Bayesian density estimation
 – Tractable online, bounded memory inference via particle filtering

• Classification and its generalizations are:
 – Very important practically
 – (Now, only somewhat) important conceptually/cognitively

• Machine learning and cognitive science have helped each other before, and should again
A Machine Learning Results Teaser

- FIXME: Find good summary figures with our lines higher up than their lines; also maybe a good clustering result
You must be at least this tall to ride... (not really)

- Naïve Bayesian classifier
- Mixture Model or Density estimation
- Prototype or Exemplar models
- Backpropagation
- Kernel Methods
 - Mercer's Theorem
- Condensed Nearest Neighbor
- Chinese Restaurant Process
- AClass
Outline

● The problem of classification
● Some history and parallels (cogsci and AI)
● AClass: Model and online inference
● Applications to scene analysis
● Using classical AI search ideas for probabilistic inference
The problem of classification

- FIXME: Something intuitive; maybe apples vs plums here?
Machine Learning

Useful microcosm
(spawned semi, active, unsupervised)

Reductions make it somewhat universally applicable

Lots of approaches do about the same despite decades of work

There's a big world out there (structure; direct generation of signals; freedom from the goose chase for “invariant features”)

Cognitive Science

Simplest kinds of concepts

Classically important; lots of empirical and theoretical work with links to machine learning;
Clearly highlights importance of induction (and utility of statistics)

Stresses key representational assumptions
(e.g. deterministic vs nondeterministic latent state - essentialism?)

“Labels” are very important and have structure
(overlapping? cross-cutting? hierarchical?)

There's a big world out there (think theories)
The problem of classification

- FIXME: Synthetic distribution figure here (size vs reflectance)
The problem of classification

- FIXME: Decision boundaries vs exploratory data analysis
Outline

- The problem of classification
- Some history and parallels (cogsci and AI)
- AClass: Model and online inference
- Applications to scene analysis
- Using classical AI search ideas for probabilistic inference
<table>
<thead>
<tr>
<th>Machine Learning</th>
<th>Cognitive Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERATIVE</td>
<td></td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>Prototype (1 per class)</td>
</tr>
<tr>
<td>Class-conditional Mixture Models</td>
<td>Prototype ((k_c) per class)</td>
</tr>
<tr>
<td>Class-conditional Kernel Density Estimation</td>
<td>Exemplar</td>
</tr>
<tr>
<td>DISCRIMINATIVE</td>
<td></td>
</tr>
<tr>
<td>Perceptron</td>
<td>PDP/Connectionism</td>
</tr>
<tr>
<td>Logistic Regression/Neural Networks</td>
<td>“similarity”-based generalization</td>
</tr>
<tr>
<td>Kernel Methods (e.g. SVMs) and</td>
<td></td>
</tr>
<tr>
<td>nearest neighbor</td>
<td>“rule”-based generalization</td>
</tr>
<tr>
<td>Inductive Logic Programming</td>
<td></td>
</tr>
<tr>
<td>Machine Learning</td>
<td>Associations</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>GENERATIVE</td>
<td>Simple, fast; “low” asymptotic accuracy</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>Cool; Hard to train (nested EM; crossvalidation)</td>
</tr>
<tr>
<td>Class-conditional Mixture Models</td>
<td>Often generalizes poorly; hard to set bandwidth</td>
</tr>
<tr>
<td>Class-conditional Kernel Density Estimation</td>
<td></td>
</tr>
<tr>
<td>DISCRIMINATIVE</td>
<td>Simple, very fast; pretty bad</td>
</tr>
<tr>
<td>Perceptron</td>
<td>Black art; often good empirically</td>
</tr>
<tr>
<td>Logistic Regression/Neural Networks</td>
<td>Black art; nice math; hard for very big datasets</td>
</tr>
<tr>
<td>Kernel Methods (e.g. SVMs) and nearest neighbor</td>
<td>Weird</td>
</tr>
<tr>
<td>Inductive Logic Programming</td>
<td></td>
</tr>
</tbody>
</table>

Black art; nice math; hard for very big datasets

Weird
Outline

• The problem of classification
• Some history and parallels (cogsci and AI)
• AClass: Model and online inference
• Applications to scene analysis
• Using classical AI search ideas for probabilistic inference
AClass – The Model

- FIXME: Graphical model on board
Comparison to Prior Art: “Bigoted Bayes”

- FIXME: Comparison w/ naïve Bayes
Details: Chinese Restaurant Processes

- FIXME: CRP picture, generative process; CRP mixtures
Details: Particle filters for CRPs

- FIXMEFIXME: Fearnhead figure of results; particle filter pseudocode
AClass – The Algorithm

```
AClass-Train(\(O\): outer-filter, \(I\): class-label, \(y\): observation)
1  foreach particle \(p\) in \(O\)
2    \(w[p]\) ← \text{PREDICTIVE-DENSITY}(p, I[I], y)
3  \text{Train-CRF}(p, I[I], y)
4  \text{Resample-Particles}(O, w)

AClass-Train-Unlabelled(\(y\): observation)
1  foreach particle \(p\) in \(O\)
2    foreach label \(l\) in 1, 2, \ldots, \(L\)
3      \(\text{prob}[l] = \frac{m[l]+\gamma}{\sum (m[l]+L\cdot \gamma)}\)
4    \text{PREDICTIVE-DENSITY}(p, I[I], y)
5    \(w[p] ← \sum(\text{prob})\)
6    \(l ← \text{Sample-Discrete}(\text{prob})\)
7    \(m[l] ← m[l]+1\)
8  \text{Train-CRF}(p, I[I], y)
9  \text{Resample-Particles}(O, w)

AClass-Test(\(O\): outer-filter, \(y\): observation)
1  foreach particle \(p\) in \(O\)
2    foreach label \(l\) in 1, 2, \ldots, \(L\)
3      \(\text{prob}[l][l] = \frac{m[l]+\gamma}{\sum (m[l]+L\cdot \gamma)}\)
4    \text{PREDICTIVE-DENSITY}(p, I[I], y)
5    \(\text{prob}[p]\) ← \text{Normalise}(\text{prob}[p][l])
6  return \text{Average}_{p}(\text{prob}[p][l])
```

```
Train-CRF(\(I\): inner-filter, \(y\): observations)
1  foreach particle \(p\) in \(I\)
2    foreach group \(g\) in 1, 2, \ldots, \(p\).numGroups
3      \(\text{prob}[g] = \frac{n[g]}{\sum(n[g]+a)}\) · \text{POSTERIOR-PREDICTIVE}(p. state\([g]\), y)
4    \(\text{prob}[g+1] = \frac{n[g]+\gamma}{\sum(n[g]+\gamma)}\) · \text{POSTERIOR-PREDICTIVE}(p. state\([g+1]\), y)
5    \(w[p] ← \sum_{a}(\text{prob})\)
6    \(g' ← \text{Sample-Discrete}(\text{prob})\)
7    \(n[g'] ← n[g'] + 1\)
8    \text{Update-Sufficient-Statistics}(p, g', y)
9  \text{Resample-Particles}(I, w)

PREDICTIVE-DENSITY(\(I\): inner-filter, \(y\): observation)
1  foreach particle \(p\) in \(I\)
2    foreach group \(g\) in 1, 2, \ldots, \(p\).numGroups
3      \(\text{prob}[p][g] = \frac{n[g]}{\sum(n[g]+a)}\) · \text{POSTERIOR-PREDICTIVE}(p. state\([g]\), y)
4    \(\text{prob}[p][g+1] = \frac{n[g]+\gamma}{\sum(n[g]+\gamma)}\) · \text{POSTERIOR-PREDICTIVE}(p. state\([g+1]\), y)
5    \(\text{prob}[p] ← \sum_{a}(\text{prob}[p][g])\)
6  return \text{Average}_{p}(\text{prob}[p])
```
Nice Properties of AClass

• Model:
 – Flexibly interpolates between finding prototypes and exemplars as data dictates
 – Nonlinear decision boundary derived from intuitive inductive bias

• Algorithm:
 – Online (and bounded memory)
 – Parallelizable
 – Simple, short
Some Preliminary Results

- FIXME: Results figure
Outline

• The problem of classification
• Some history and parallels (cogsci and AI)
• AClass: Model and online inference
• Applications to scene analysis
• Using classical AI search ideas for probabilistic inference
Applications to Scene Analysis

• FIXME: Have figures here; talk for now
AI Search and Probabilistic Inference: The New Frankenstein

- FIXME: Discuss sequentialization approximation; how AClass is a special case, etc.
Conclusions

• Intuitive inductive biases can yield effective classifiers:
 – Prototype finding via nonparametric Bayesian density estimation
 – Tractable online, bounded memory inference via particle filtering

• Classification and its generalizations are:
 – Very important practically
 – (Now, only somewhat) important conceptually/cognitively

• Machine learning and cognitive science have helped each other before, and should again