Computational Saliency Models
Cheston Tan, Sharat Chikkerur
{cheston,sharat}@mit.edu
Outline

- **Saliency 101**
- **Bottom up Saliency Model**
 - Itti and Koch, “A saliency-based search mechanism for overt and covert shifts of visual attention”, Vision Research, ‘00
- **Contextual Guidance Model : (Bottom up + Top Down)**
 - A. Torralba,“Modeling global scene factors in attention", JOSA, 20(7), 03
 - A. Torralba, "Contextual Priming for Object Detection", IJCV, 53(2), 03
- **Summary**
- **Demo**
 - Comparison of bottom up saliency models
What is saliency?
- But first, what is “Attention”?
- Biological visual system process complex scenes ‘serially’ (despite parallel computation)
- Specific parts of the scene are “attended” by covert or overt attention (eye movements).

What drives attention?
- Saliency!
 - Bottom up saliency
 - Driven by scene features, Fast!
 - Top down saliency
 - Driven by volitional control, Slow

Biological Evidence
- Believed to be located in posterior pareital cortex ,V4
- Spike modulation observed in V1,V2,V4 (Luck et al., ’97; Reynolds et al ‘00)
Top down saliency- Spatial Modulation

(Torralba)
Top down saliency-Feature modulation

(Navalpakkam and Itti)
Computational Saliency Model

- **Bottom up saliency**
 - Intuition: Unusual/Salient items should draw our attention and be easy to search for.
 - Unusual targets? A target whose features are outliers to the local distribution of features.
 - How do we detect outliers?
 - Explicit statistical Model, Ruth Rosenholtz et al., Torralba et al.
 - Approximate estimation with center surround filters, Itti et al.

- **Top down saliency**
 - Intuition: Searching is task oriented
 - Task priors change relevance of locations and features
 - How are the priors manifested?
 - Modulation: additive boosting
 - Gain control: multiplicative boosting/supression (Luck et. al, 97')
Outline

- **Saliency 101**
- **Bottom up**
 - Itti and Koch, “A saliency-based search mechanism for overt and covert shifts of visual attention”, Vision Research, ’00
- **Top Down**
 - A. Torralba, “Modeling global scene factors in attention", JOSA, 20(7), 03
 - A. Torralba, "Contextual Priming for Object Detection", IJCV, 53(2), 03
- **Summary**
- **Demo**
 - Comparison of bottom up saliency models
Itti and Koch Algorithm

- **Feature maps**
 - Compute strength of individual features

- **Conspicuity maps**
 - Compute saliency of individual features through center surround

- **Saliency maps**
 - Combines saliency from different features

- **Inhibition of return**
 - Models covert attention

(Itti et al.)
Example

(Itti et al.)
Feature maps

\[I = \frac{r + g + b}{3}, I(\sigma) = (I_\sigma) \]

\[(I)_0 = I \]

\[(I)_1 = (I_0 * G) \downarrow_2, (I)_\sigma = (I_{\sigma-1} * G) \downarrow_2 \]

\[O(\sigma, \theta) = (I * Gabor(\theta))_\sigma \]

\[R = r - \frac{(g + b)}{2}, G = g - \frac{(r + b)}{2} \]

\[B = b - \frac{(r + g)}{2}, Y = \frac{(r + g)}{2} - \frac{r - g}{2} - b \]

\[R(\sigma), G(\sigma), B(\sigma), Y(\sigma) \]

(itti et al.)
Example Features

Red/Green

Blue/Yellow

Intensity

Orientation(0)
Center surround and normalization

\[I(c, s) = |I(c) - I(s)| \]

\[RG(c, s) = |(R(c) - G(c)) - (G(s) - R(s))| \]

\[BY(c, s) = |(B(c) - Y(c)) - (Y(s) - B(s))| \]

\[O(c, s, \theta) = |O(c, \theta) - O(s, \theta)| \]

c \in \{2, 3, 4\}, s = c + \delta, \delta \in \{3, 4\}
Example: Conspicuity maps

\[
\bar{I} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} N(I(c,s))
\]

\[
\bar{C} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \left[N(RG(c,s)) + N(BY(c,s)) \right]
\]

\[
\bar{O} = \sum_{\theta} N\left(\bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} N(O(c,s,\theta)) \right)
\]

(Itti et al.)
Example: Conspicuity maps
Saliency maps

\[
S = \frac{1}{3} \left(N(I) + N(C) + N(O) \right)
\]

(ltti et al.)
IOR: Inhibition of return

- Attention shifts are modeled using IAF neurons
- Salience map feeds into a WTA neural network
- Attention is first shifted to the most salient location
- The region is consequently suppressed, and attention is shifted to the next most salient location
- The FOA is shifted in ‘simulated time’ to model human attention mechanism

(Itti et al.)
Time line: Bottom-up attention

Koch, Ullman
1985

Itti, Koch, Niebur
1998

Itti and Koch
2001

V. Navalpakkam and Itti, 2005

D.Walter And Koch, 2006

Courtesy, D.Walter
Outline

- **Saliency 101**
- **Bottom up**
 - Itti and Koch, “A saliency-based search mechanism for overt and covert shifts of visual attention”, Vision Research, ‘00
- **Top Down**
 - A. Torralba,“Modeling global scene factors in attention", JOSA, 20(7), 03
 - A. Torralba, "Contextual Priming for Object Detection", IJCV, 53(2), 03
- **Summary**
- **Demo**
 - Comparison of bottom up saliency models
Contextual Guidance model

- Saliency and global-context features computed in parallel, feed-forward manner
- Search task exerts top-down control
Contextual Guidance model

- Saliency map modulated by contextual information
- Probability of target presence by integration of task constraints and global and local image information
Contextual Guidance model

Saliency

Task: painting search

Task: mug search

Task: painting search

Task: mug search
Statistical approach to saliency

- Statistically distinguishable from background
- Locations differing from neighboring regions more informative
- Rare image features more likely to be objects
Statistical approach to saliency

- Each color channel passed through bank of multiscale oriented filters (e.g. Steerable pyramid) to extract local features
- Model distribution of features using multivariate power-exponential distribution
- Normalization constant, k
- Exponent α
- Mean η
- Covariance Δ

$$\log p(L) = \log k - \frac{1}{2} [(L - \eta)^t \Delta^{-1} (L - \eta)]^\alpha$$
Statistical approach to saliency

- Each color channel passed through bank of multiscale oriented filters (e.g. Steerable pyramid) to extract local features
- Model distribution of features using multivariate power-exponential distribution
 - Normalization constant, k
 - Exponent α
 - Mean η
 - Covariance Δ

\[
\log p(L) = \log k - \frac{1}{2} \left[(L - \eta)^t \Delta^{-1} (L - \eta)\right]^\alpha
\]

\[
\frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2}\right)
\]

Gaussian
Statistical approach to saliency

Percentage of times the most salient location is inside the target
Comparison
Comparison
Comparison
Comparison
Comparison
Comparison
Comparison
Summary

- Saliency is the underlying mechanism that drives attention
- **Saliency: bottom-up or top-down**
- **Bottom up: feature driven**
- **Top down: Task driven**
- **Computing bottom-up**
 - Detects outliers in feature space
 - Itti et al. algorithm - uses center surround filters
 - Torralba et al. – explicitly model statistics of features
 - Rosenholtz – gaussian modeling of features
- **Comparison**
Thank You
Biological Plausibility

- **Pop-out**
 - Search time/False positives is independent of the number of distractors

- **Search**
 - Search time increases linearly with the number of distractors

- **Performs better than humans!**