An empirical approach to the experience of architectural space in VR

Exploring relations between features and affective appraisals of rectangular interiors

Article for DIGITAL DESIGN - 22nd eCAADe Conference, Sept. 17-20, 2003

Gerald Franz, Markus von der Heyde, & Heinrich H. Bülthoff

September 22, 2003

Abstract

While it is well known that the built environment influences our emotional state, it is often difficult to attribute these experiences to particular properties. In fact, a systematic investigation of the relation between physical structure and emotional experience of architecture has not yet been done. Now virtual reality simulations facilitate a completely controlled variation of spatial properties and thus allow to empirically evaluate architectural hypotheses. The aim of the presented study was to investigate which factors from a component-based description of rooms significantly correlate with cardinal dimensions of experience.

In a perceptual experiment experiential qualities of 16 virtual vacant rectangular interiors were rated in eight principal categories by 16 participants using the semantic differential scaling technique. The scenes were generated by a custom made graphics tool that also automatically generated the component-based scene descriptions.

The data analysis revealed several interesting correlations between scene features and rated experience: For example, a preference for ratios near to the golden section could be observed for spatial proportions, which are not directly perceivable. Altogether, a set of five independent factors (openness, two room proportions, room area and balustrade height) appeared to be effective for widely describing the observed variance of the averaged attributed experiential qualities.

Our combination of realistic virtual reality simulations and psychophysical data raising methods proved to be effective for basic architectural research. It allowed us to demonstrate quantitative relations between physical properties from a component-based description of architectural space and its emotional experience.
1 Introduction

It is well known that the built environment influences our emotional state. There are rooms where one immediately feels comfortable and perfectly at ease, and others that appear hostile and menacing. Often it is difficult to attribute these experiences to particular properties of rooms. Architectural theory and education provide only for a few and mainly historic normative rules, ceding the liability entirely to the personal sensitivity of the designer. Several classic studies in environmental psychology (e.g., Kasmar, 1970) have shown that assessments of architectural settings contain common intersubjective patterns that must have been caused by some specific stimulus properties. Also it has been demonstrated that scales based on phenomenological comparison criteria (e.g., complexity, novelty, naturalness, cf. Berlyne, 1972; Wohlwill, 1976), allow predictions on aesthetic and emotional experience. Yet surprisingly there are only a few systematic investigations of direct relations between physical structure and experienced architectural space.

One obvious reason for that are the methodical difficulties empirical research is faced under hardly controlled real world conditions: limited reproducibility and inflexible stimuli often restrict the scope of investigations to case studies. These drawbacks can be overcome using virtual reality (VR) technology: simulations provide for a wide flexibility under completely controlled laboratory conditions at a high degree of perceptual realism (Büthoff & van Veen, 2001). Although quasi-photorealistic quality could be a key factor for transferability (Daniel & Meitner, 2001), several studies (e.g., Henry, 1992; Slangen-de Kort, Ijsselsteijn, Kooijman, & Schuurmans, 2001) show that already current standard virtual environments can be designed to convey experiential qualities of architecture sufficiently similar to reality. Computer simulations also greatly simplify data extraction and analysis and thereby provide for the necessary diverse comparison criteria to experience that are a prerequisite for exploratory factor evaluation studies.

On the other hand, for quantifying the complex phenomena of emotional experience and environmental preferences, environmental psychology at least provides for some basic partial models (cf. Russell & Snodgrass, 1987; Gifford, 1997). Several practically applicable survey techniques have been described, mainly based on self reports (cf. Bechtel, 1987), that, despite certain methodical drawbacks, do well for preliminary evaluations. These methods are particularly suitable for systematic evaluations of affective appraisals, i.e., attributed emotional qualities of settings or cognitions about expected place-elicited impacts on one’s mood. While affective appraisals might be only a rough approximation to actual experiences, they are supposed be particularly relevant for decisions and behavior (Russell & Snodgrass, 1987).

The above outlined prerequisites allow for evaluations of simulated single spaces. However, another missing central requirement for a broader empirical approach are generic
description models of space that provide for comparability between environments and correlate with cardinal dimensions of experience. Recent findings in empirical and computational scene and object recognition research have shown that relatively few generic pictorial features are widely sufficient for recognizing scenes (e.g., Wallis & Bülthoff, 1999; Oliva & Torralba, 2001), humans accomplish such tasks in fractions of a second, even before conscious awareness (Thorpe, Fize, & Marlot, 1996). It is well known that the perception and recognition process is simultaneously accompanied by emotional responses (cf. Damasio, 1997). Hence, the perceptual gist that allows for scene recognition may also contain primary factors influencing the emotional experience. As demonstrated in a previous study (Franz, von der Heyde, & Bülthoff, 2002), scene descriptions based on basic image features (color distributions, brightness level, amount of edges, etc.) are significantly correlated with attributed experiential qualities.

Besides pictorial properties, humans directly perceive spatial features of their environment as well. Consequently, the aim of this study was to complement these findings with an exploration of relations between basic spatial properties and experience. Models of object recognition that are based on structural descriptions of geometrical objects (Biederman, 1987) introduce systematics of primitives and interrelations that are difficult to transform in preferably simple linear factors. Since the semantic meaning of architectural elements can normally be taken for granted, we chose a different approach that was initially motivated by the way spaces are described in colloquial language (“a narrow rectangular room with two small windows”) and to a certain extent adopts the ecological view of affordances (Gibson, 1979): possible interactions with spaces widely depend on the availability of functional units that correspond to structural components as windows, doors, and floors. If sensibly arranged, their potential is primarily dependent on the geometric dimensions, only to a lesser degree on relations. So our component-based description model solely consisted of the quantities and basic dimensions of the rooms, windows, and doors. To facilitate a direct comparison between different settings, topological or relational information was intentionally excluded, leaving a simple array of scalar quantities.

2 Experimental questions and objectives

The primary goal of the empirical study was to exemplarily test quantifiable interrelations between parameters from the simplified component-based spatial model and attributed experiential qualities of interior spaces. Beyond that, the explorative question was, which combination of derivable linear independent factors would maximize the explained variance and thereby appear most suitable as predictors for experiential qualities. While for example the dimensions of a rectangular room can be defined by the three factors length, width, and height, or equally unambiguously by its volume and
two proportions, it is very likely that the degree of explicable variance differs. For this exploration normative architectural knowledge for instance on proportions appeared as a suitable starting point, and besides that, it was particularly interesting whether our outcomes in VR simulations would roughly correspond to classic rules as formulated for example by Palladio (1570) that to our knowledge were not yet psychophysically investigated.

3 Method

In the perceptual experiment 16 participants (8 female / 8 male) rated 16 virtual rooms in eight experiential categories. For each scene the assessment was preceded by a 30 second exploration period. Subsequently, the experience of all interiors was evaluated using a scaling technique derived from the semantic differential (cf. Osgood, Suci, & Tannenbaum, 1957; Heise, 1970). Each experiential category (Table 1) was represented by a pair of oppositional adjectives and could be rated on a seven step Likert-like scale. The electronic presentation allowed for a complete randomization of the scene and rating sequence and also provided for response times. The experimental data was complemented by a post-experiment questionnaire on the experimental task and experienced presence during the simulation.

The stimulus set was generated by a custom made graphics tool (cf. Franz, von der Heyde, & Bülthoff, 2003) and consisted of 16 radiosity-rendered 360 degree panoramic images of vacant rectangular interiors (see Figure 1). The script based generation process allowed for an unlimited number of rooms with exactly defined differences. In addition, it was the basis of the scene descriptions for the subsequent correlation analysis. For keeping this test-of-concept study easy to handle, a restricted set of varied parameters in the scenes was chosen, that nevertheless resembled a vast number of small- and mid-scale real world rooms. All dimensions and positions of the structural com-

<table>
<thead>
<tr>
<th>category</th>
<th>English low extreme</th>
<th>English high extreme</th>
<th>German low extreme</th>
<th>German high extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>pleasure</td>
<td>unpleasant</td>
<td>pleasant</td>
<td>unangenehm</td>
<td>angenehm</td>
</tr>
<tr>
<td>interestingness</td>
<td>boring</td>
<td>interesting</td>
<td>langweilig</td>
<td>interessant</td>
</tr>
<tr>
<td>beauty</td>
<td>ugly</td>
<td>beautiful</td>
<td>hässlich</td>
<td>schön</td>
</tr>
<tr>
<td>normality</td>
<td>strange</td>
<td>normal</td>
<td>ungewöhnlich</td>
<td>normal</td>
</tr>
<tr>
<td>calm</td>
<td>arousing</td>
<td>calm</td>
<td>aufregend</td>
<td>ruhig</td>
</tr>
<tr>
<td>spaciousness</td>
<td>narrow</td>
<td>spacious</td>
<td>eng</td>
<td>weit</td>
</tr>
<tr>
<td>brightness</td>
<td>dark</td>
<td>bright</td>
<td>dunkel</td>
<td>hell</td>
</tr>
<tr>
<td>openness</td>
<td>enclosed</td>
<td>open</td>
<td>geschlossen</td>
<td>offen</td>
</tr>
</tbody>
</table>

Table 1: Approximative English translations of the rating categories used in the semantic differential. The language in the experiment was German.
ponents (e.g., walls, windows, doors, ledges) were varied within the normal ranges of real buildings. Other perceptual properties (surfaces, illumination, urban background) were constant over all scenes. The scenes were subjectively preselected from a larger randomly generated set of 48 interiors in order to maximize diversity and realism.

The virtual eyepoint was at a fixed position for each room slightly excentric from the center at a height of 1.60 m, while the real eyeheight was at normal seating height (about 1.20 m). As display device a spherical wide-angle projection system (Elumens VisionStation™) at a resolution of 1024x768 pixels was used. The simulated geometrical field of view (FOV) matched the physical FOV of about 130x90 degrees. While the screen distance of the projection was fixed at about 75 cm, the stimuli itself offered several monocular depth and size cues: absolute information was primarily conveyed by the virtual horizon height and inferable angular declination. Also the structural components and material textures provided additional cues, as their dimensions were in realistic ranges.

For the correlation analysis the rating results of each scene and category were averaged over all subjects. As basic statistical parameter the linear correlation coefficient r
was chosen. When theoretically justified (e.g., for proportions), additionally non-linear trends were evaluated using quadratic regression fits. Significance levels were calculated using Pearson’s product moment correlation coefficient. The part-based scene description provided 12 primary parameters, which were the base for 13 compound measurands.

4 Results

The variance of the ratings was fairly low, the mean of the standard deviation ranged from 1.13 (brightness) to 1.51 (calm) at an average of 1.36 by an equal distribution level of 2.16, indicating an unimodal distribution and therefore meaningful intersubjective mean values. Correlations within rating categories were conform to the well-known pattern of three principal axes plus denotative categories (cf. Heise, 1970). The response times, even z-transformed per subject, were only slightly correlated with the extremity of judgments (rMean=-0.18**), and thus not useful as additional behavioral measure. According to the post-experiment questionnaire, participants felt moderately present (average rating 62.5%) during experiment, and were widely content with the appropriateness of the medium (80.2%) and realism of the simulation (72.9%).

As expected, denotative rating categories covaried with corresponding scene features (see Figure 2 for selected correlations). For example spaciousness correlated with the actual room area (correlation coefficient r=0.84), but the coefficient with overall window area was even higher (r=0.92). Perceived openness and brightness were highly correlated to the relative wall openness ratio (wall area / window area), which is a direct correspondent to the physical brightness of the scenes. For openness, the comparison with the size of single windows rendered the highest correlation coefficient (r=0.85). The results of rated calm were widely oppositional to rated openness, it was negatively correlated with all factors influencing relations to the exterior as for instance balustrade height (r=0.75) and window sizes (r=-0.69). Unlike window parameters, door properties did not yield any relevant or significant effect to any rating category.

The three evalutive rating dimensions beauty, pleasure, and interestingness, appeared highly interrelated (correlation beauty-pleasure r=0.96, beauty-interestingness r=0.90). Regarding their correlations to scene features, the correlation with the physical openness ratio was highest (e.g., beauty-openness r=0.86). In contrast to our expectations, window proportions or numbers had no significant effect, apart from openness only balustrade height showed a significant correlation (r=-0.44). Regarding room dimensions, from the tested combinations of independent linear factors a set consisting of room area (r=0.54), the principal proportions width to height (r=0.53), and length to width (r=-0.43) yielded the highest yet still moderate correlations with the evaluative
Categories: interestingness, pleasure, beauty, calm, spaciousness, openness, brightness, normality

Figure 2: Linear correlations between rating categories and selected scene features.

rating dimensions. However, a quadratic regression for the correlations with room proportions revealed assumable dominant non-linear trends and showed maxima near to the golden section (room length/width maximum at ratio 1.7, room width/height maximum at ratio 1.5, see Figure 3). In addition to these parallel main tendencies, the differentiation in three evaluative experiential categories appeared informative: interestingness was relatively more correlated with window properties, whilst beauty more with room proportions.

In contrast to our expectations, the ratings of normality and interestingness were not significantly interrelated. The only highly significant linear correlation of normality was detectable to physical openness ($r=0.65$). But square fitting revealed central global extrema and symmetric characteristics for several scene features (e.g., window dimensions and room proportions), indicating that extreme values were seen as strange.

5 Discussion

The strong and widely linear relation between physical openness and the evaluative rating categories were not expected. We suppose that this was partially caused by the particular attractiveness of the urban background. Likewise the short duration of exposure to each room, and a missing simulation of potentially incommoding environmental factors as noise level and reduced privacy by passers-by may have contributed to the entirely positive response to openness. The remarkably high correlation between rated
spaciousness and window size may be interpretable as compound effect of room size and openness, since obviously room size directly affects available wall area for openings, and an additional effect of the surrounding outdoor space is indicated by the correlation level with the physical openness ratio (r=0.68).

Overall, the results appear reasonable, since denotative ratings almost covary with corresponding scene features and expectations based on normative rules were confirmed. These outcomes clearly support the validity of the simulation and show a substantial potential for empirically investigating experiential qualities. Many of the sometimes unexpectedly high correlations virtually provoke for further speculations on causalities. As this is always problematic for correlations, we prefer to consider them as descriptors or indicators that allow for probable inferences on experiential qualities. Altogether, from the tested combinations a set of five almost independent factors (openness ratio, two room proportions, room area, and balustrade height, see Figure 4) appeared to be a very effective set of descriptors for the variance in the ratings of this scene set. While an entire linear separation of the factors certainly is mathematically easy, for example by dividing openness by balustrade height, this set has the clear advantage of obvious interpretability.

Let us return to the theoretical origins of our component-based description model, what are the implications of our findings? First of all, our factors are not meant as a model for mental representation or empirical scene and object recognition. Their primary objective is to effectively describe the differences in the scene set that are most correlated with attributed experience. Besides functional and spatial information, general perceptual properties as brightness or pictorial frequencies (e.g., via the number of openings) are indirectly included in the measurands that would presumably emerge in other models. While therefore the importance of the implemented ecological aspect should not be overstressed, it is on the other hand a thought-provoking source for interpretations. For example, had doors no effect because they were without function in the experiment? Or
Figure 4: Explained variance by a multi-variate linear regression. Together the five linear factors openness ratio, room area, room width/length, room width/height, and balustrade height account for between 57% and 92% of the observed variance in the averaged ratings.

was room area so effective on pleasure, in contrast to the normal connotation of coziness, as it just linearly increased the functional potential? Pointing in a similar direction, several participants annotated that it would have changed their experience if they had known which purpose the rooms were meant for. Hence as suggested by Russell & Snodgrass (1987), a consideration of action and defined function could allow further refinements.

While for the purposes of this study configural information was apparently neglectable, the results do of course not implicate that relations between components are of minor effect. In fact the tuning of our scene generator for producing just similarly “normal” configurations was a process of many successive refinements. Most architects would presumably consider this aspect of composition more delicate than reducing buildings to an array of roughly specified features. The scope of this test-of-concept study was deliberately limited to some variations of standard closed rectangular rooms. The chosen descriptors were particularly suited to capture the gist of these kind of spaces with a low complexity level and consisting of simple structural components with unambiguous composition. Of course, for being generally applicable, the description model would have to be extended and adapted. While most individual results of the study appear generally convincing, due to the small and preselected scene set they certainly cannot claim general external validity. The method itself, however, has successfully shown its generic potential. In sum, the revealed factors appear promising candidates for further investigations.
6 Conclusion

In this study we quantitatively explored correlations between basic spatial properties of rooms and their attributed experiential qualities. Virtual reality simulations proved to be a powerful means for basic architectural research that allows for novel empirical methods. The results generally back the principal approach that aspects of emotional experience are empirically investigable and have detectable correspondents in the physical environment. The interaction of five widely independent factors (openness, two room proportions, room area and balustrade height) from a component-based description appeared to be effective for describing the observed variance in the ratings. The high level of correlation is particularly remarkable for affective and aesthetic rating categories that cannot be trivially attributed to just one scene feature. The chosen model representation offers evidence both for the importance of perceptual features as for an affordance based view. Since architecture is both functionally motivated and art, we think that the profession as well as occupants will benefit from reliable quantification methods for experiential qualities that allow them to be considered as objective design criteria.

References

