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Abstract 

 

One of the major lessons of memory research has been that human memory is fallible, 

imprecise, and subject to interference. Thus, although observers can remember thousands 

of images, it is widely assumed that these memories lack detail. Contrary to this 

assumption, here we show that long-term memory is capable of storing a massive number 

of objects with details from the image. Participants viewed pictures of 2500 objects over 

the course of 5.5 hours. Afterwards, they were shown pairs of images, and indicated 

which of the two they had seen. The previously viewed item could be paired with either 

an object from a novel category, an object of the same basic level category, or the same 

object in a different state or pose. Performance in each of these conditions was 

remarkably high (92%, 88%, 87%, respectively), suggesting participants successfully 

maintained detailed representations of thousands of images. These results have 

implications for cognitive models in which capacity limitations impose a primary 

computational constraint (e.g., models of object recognition), and pose a challenge to 

neural models of memory storage and retrieval, which must be able to account for such a 

large and detailed storage capacity.  

Keywords: visual long-term memory, memory capacity, object recognition 
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\body 

Introduction 

We have all had the experience of watching a movie trailer and having the 

overwhelming feeling that we can see much more than we could possibly report later. 

This subjective experience is consistent with research on human memory, which suggests 

that as information passes from sensory memory, to short-term memory, to long-term 

memory, the amount of perceptual detail stored decreases. For example, within a few 

hundred milliseconds of perceiving an image, sensory memory confers a truly 

photographic experience, enabling you to report any of the image details (1). Seconds 

later, short-term memory enables you to report only sparse details from the image (2). 

Days later you might only be able to report the gist of what you had seen (3).  

While long-term memory is generally believed to lack detail, it is well established 

that long-term memory can store a massive number of items. Landmark studies in the 

1970s demonstrated that after viewing 10,000 scenes for a few seconds each, people 

could determine which of two images had been seen with 83% accuracy (4; see also 5, 6). 

This level of performance indicates the existence of a large storage capacity for images.   

However, remembering the gist of an image (e.g., “I saw a picture of a wedding 

not a beach”) requires the storage of much less information than remembering the gist 

and specific details (e.g., “I saw that specific wedding picture”). Thus, to truly estimate 

the information capacity of long-term memory, it is necessary to determine both the 

quantity of items that can be remembered and the fidelity (amount of detail) with which 

each item is remembered. This point highlights an important limitation of previous large 
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scale memory studies (4, 5, 6): the level of detail required to succeed at the memory tests 

has never been systematically examined.  In these studies, the stimuli were images taken 

from magazines, where the foil items used in the two-alternative forced-choice tests were 

random images drawn from the same set (4). Thus, the foil items were typically quite 

different from the studied images, making it impossible to conclude whether the 

memories for each item in these previous experiments consisted of only the „gist‟ or 

category of the image, or whether they contained specific details about the images. It 

therefore remains unclear exactly how much visual information can be stored in human 

long-term memory. 

There are reasons for thinking that the memories for each item in these large-scale 

experiments might have consisted of only the „gist‟ or category of the image. For 

example, a well-known body of research has shown that human observers often fail to 

notice significant changes in visual scenes (for instance, if their conversation partner is 

switched to another person, or if large background objects suddenly disappear; 7, 8).  

These „change blindness‟ studies suggest that the amount of information we remember 

about each item may be quite low (e.g., 8). In addition, it has been elegantly 

demonstrated that the details of visual memories can easily be interfered with by 

experimenter suggestion, a matter of serious concern for eyewitness testimony, as well as 

another indication that visual memories might be very sparse (9). Taken together, these 

results have led many to infer that the representations used to remember the thousands of 

images from the experiments of Shepard (5) and Standing (4) were in fact quite sparse, 

with few or no details about the images except for their basic-level categories (e.g. 8, 10, 

11, 12). 
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However, recent work has also suggested that visual long-term memory 

representations can be more detailed than previously believed. Long-term memory for 

objects in scenes can contain more information than only the „gist‟ of the object (13, 14, 

15, 16). For instance Hollingworth (13) showed that, when requiring memory for a 

hundred or more objects, observers remain significantly above chance at remembering 

which exemplar of an object they have seen (e.g., „did you see this power drill or that 

one?‟) even after seeing up to 400 objects in between studying the object and being tested 

on it. This suggests that memory is capable of storing fairly detailed visual 

representations of objects over long time periods (e.g., longer than working memory).   

The current study was designed to estimate the information capacity of visual 

long-term memory by simultaneously pushing the system in terms of both the quantity 

and the fidelity of the representations that must be stored. First, we used isolated objects 

that were not embedded in scenes, in order to more systematically control the conceptual 

content of the stimulus set and prevent the role of contextual cues that may have 

contributed to memory performance in previous experiments. In addition, we used very 

subtle visual discriminations to probe the fidelity of the visual representations. Finally, 

we had people remember several thousand objects. Combined, these manipulations 

enable us to estimate a new bound on the capacity of memory to store visual information. 

Results 

Observers were presented with pictures of 2500 real world objects for 3 seconds 

each.  The experiment instructions and displays were designed to optimize the encoding 

of object information into memory.  First, observers were informed that they should try to 

remember all the details of the items (e.g., 17).  Second, objects from mostly distinct 
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basic-level categories were chosen to minimize conceptual interference (e.g., 18). Finally, 

memory was tested with a two alternative forced choice test in which a studied item was 

paired with a foil and the task was to choose the studied item, allowing for recognition 

memory rather than recall memory (as in 4). 

We varied the similarity of the studied item and the foil item in three ways (see 

Figure 1). In the novel condition, the old item was paired with a new item that was 

categorically distinct from all of the previously studied objects. In this case, remembering 

the category of the object, even without remembering the visual details of the object, 

would be sufficient to choose the appropriate item. In the exemplar condition, the old 

item was paired with a physically similar new object from the same basic level category. 

In this condition, remembering only the basic level category of the object would result in 

chance performance. Finally, in the state condition, the old item was paired with a new 

item that was exactly the same object, but appeared in a different state or pose. In this 

condition, memory for the category of the object, or even for the object‟s identity, would 

be insufficient to select the old item from the pair. Thus, memory for specific details from 

the image is required to select the appropriate object in both the exemplar and state 

conditions.  Critically, observers did not know during the study session which items of 

the 2500 would be tested afterwards, nor what they would be tested against.  Thus any 

strategic encoding of a specific detail that would distinguish between the item and the foil 

was not possible.  To perform well on average in both the exemplar and the state 

conditions, observers would have to encode many specific details from each object. 

Performance was remarkably high in all three of the test conditions in the two-

alternative forced choice (see Figure 2).  As anticipated based on previous research
 
(4), 

performance was high in the novel condition, with participants correctly reporting the old 
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item on 92.5% (s.e.m. = 1.6%) of the trials.  Surprisingly, performance was also 

exceptionally high in both conditions that required memory for details from the images: 

on average, participants responded correctly on 87.6% (s.e.m. = 1.8%) of exemplar trials, 

and 87.2% (s.e.m. = 1.8%) of the state trials.  A one-way repeated measures ANOVA 

revealed a significant effect of condition, F(2,26) = 11.3, p < 0.001. Planned pairwise t-

tests show that performance in the novel condition was significantly more accurate than 

the state and exemplar conditions (novel vs. exemplar: t(13)=3.4,  p<0.01;  novel vs. 

state: t(13)=4.3, p<0.01; exemplar vs. state, n.s. p>0.10). However, reaction time data 

was slowest in the state condition, intermediate in the exemplar condition, and fastest in 

the novel conditions (M=2.58s, 2.42s, 2.28s respectively; novel vs. exemplar: t(13) = 

1.81, p = 0.09; novel vs. state: t(13) = 4.05, p = 0.001; exemplar vs. state: t(13) = 2.71, p 

= 0.02), consistent with the idea that the novel, exemplar, and state conditions required 

increasing detail. Participant reports afterwards indicated that they were usually explicitly 

aware of which item they had seen, as they expressed confidence in their performance 

and volunteered information about the details that enabled them to pick the correct items.   

During the presentation of the 2500 objects, participants monitored for any repeat 

images.  Unbeknownst to the participants, these repeats occurred anywhere from 1 to 

1024 images previously in the sequence (on average 1 in 8 images was a repeat). This 

task insured that participants were actively attending to the stream of images as they were 

presented, and also provided an online estimate of memory storage capacity over the 

course of the entire study session.  

 Performance on the repeat-detection task also demonstrated remarkable memory.  

Participants rarely false-alarmed (1.3%, ± 1% s.e.m), and were highly accurate in 

reporting actual repeats (96% overall, ± 1% s.e.m.). Accuracy was near ceiling for repeat 
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images with up to 63 intervening items, and declined gradually for detecting repeat items 

with more intervening items (see Supporting Information, Figure S1). Even at the longest 

condition of 1023 intervening items (i.e. items that were initially presented ~ 2 hours 

previously), the repeats were detected about 80% of the time. The correlation between 

observers‟ performance at the repeat detection task and their performance in the forced-

choice was high (r=0.81). The error rate as a function of number of intervening items fits 

well with a standard power law of forgetting (r
2
=0.98). The repeat detection task also 

shows that this high capacity memory arises not only in two-alternative forced choice 

tasks, but also in ongoing old/new recognition tasks, though the repeat-detection task did 

not probe for more detailed representations beyond the category level.  Together with the 

memory test, these results indicate a massive capacity memory system, in terms of both 

the quantity and fidelity of the visual information that can be remembered. 

Discussion 

We found that observers could successfully remember details about thousands of 

images after only a single viewing. What do these data say about the information capacity 

of visual long-term memory?  It is known from previous research that people can 

remember large numbers of pictures (4, 5, 6) but it has often been assumed that they were 

storing only the gist of these images (8, 10, 11, 12). While some evidence suggested 

observers are capable of remembering details about a few hundred objects over long time 

periods (e.g., 13), no experiment had previously demonstrated accurate memory at the 

exemplar or state level on such a large scale. The present results demonstrate visual 

memory is a massive store that is not exhausted by a set of 2500 detailed representations 

of objects.  Importantly, these data cannot reveal the format of these representations, and 
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should not be taken to suggest that observers have a photographic-like memory (19).  

Further work is required to understand how the details from the images are encoded and 

stored in visual long-term memory.    

The information capacity of memory 

Memory capacity cannot solely be characterized by the number of items stored:  a 

proper capacity estimate takes into account the number of items remembered and 

multiplies this by the amount of information per item.  In the present experiment we show 

that the information remembered per item is much higher than previously believed, as 

observers can correctly choose among visually similar foils.  Therefore, any estimate of 

long-term memory capacity will be significantly increased by the present data.    Ideally, 

we could quantify this increase, e.g. using information-theoretic bits, in terms of the 

actual visual code used to represent the objects.  Unfortunately, one must know how the 

brain encodes visual information into memory to truly quantify capacity in this way.    

However, Landauer (20) provided an alternate method for quantifying the 

capacity of memory by calculating the number of bits required to correctly make a 

decision about which items have been seen and which have not (see also 21). Rather than 

assign images codes based on visual similarity, this model assigns each image a random 

code regardless of its visual appearance. Memory errors happen when two images are 

assigned the same code. In this model the optimal code length is computed from the total 

number of items to remember and the percent correct achieved on a two-alternative 

forced choice task (see Supporting Information). Importantly, this model does not take 

into account the content of the remembered items: the same code length would be 

obtained if people remembered 80% of 100 natural scenes or 80% of 100 colored letters. 
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In other words, the bits in the model refer to content-independent memory addresses, and 

not estimated codes used by the visual system. 

Given the 93% performance in the novel condition, the optimal code would 

require 13.8 bits/item, which is comparable to estimates of 10-14 bits needed for previous 

large-scale experiments (20).  To expand on the model of Landauer, we assume a 

hierarchical model of memory where we first specify the category and the additional bits 

of information specify the exemplar and state of the item in that category (see Supporting 

Information).  To match 88% performance in the exemplar conditions, 2.0 additional 

bits/item are required for each item.  Similarly, 2.0 additional bits are required to achieve 

87% correct in the state condition.  Thus, we increase the estimated code length from 

13.8 to 17.8 bits/item.  This raises the lower bound on our estimate of the representational 

capacity of long-term memory by an order of magnitude, from ~14,000 (2
13.8

) to 

~228,000 (2
17.8

) unique codes.  This number does not tell us the true visual information 

capacity of the system. However, this model is a formal way of demonstrating how 

quickly any estimate of memory capacity grows if we increase the size of the 

representation of each individual object in memory.    

 Why examine people‟s capacity to remember visual information?  One reason is 

that the evolution of more complicated cognition and behavioral repertoires involved the 

gradual enlargement of the long-term memory capacities of the brain (22). In particular, 

there are reasons to believe the capacity of our memory systems to store perceptual 

information may be a critical factor in abstract reasoning (23, 24). It has been argued, for 

example, that abstract conceptual knowledge that appears amodal and abstracted from 

actual experience (e.g., 25) may in fact be grounded in perceptual knowledge (e.g., 

perceptual symbol systems: 26). Under this view, abstract conceptual properties are 
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created on the fly by mental simulations on perceptual knowledge. This suggests an 

adaptive significance for the ability to encode a large amount of information in memory: 

storing large amounts of perceptual information allows abstraction based on all available 

information, rather than requiring a decision about what information might be necessary 

at some later point in time (24, 27).  

Organization of memory 

 

All 2500 items in our study stream were categorically distinct and thus had 

different high-level, conceptual representations. Long-term memory is often seen as 

organized by conceptual similarity (e.g., in spreading activation models; 28, 29). Thus, 

the conceptual distinctiveness of the objects may have reduced interference between them 

and helped support the remarkable memory performance we observed (18). In addition, 

recent work has suggested that the representation of the perceptual features of an object 

may often differ depending on the category the object is drawn from (e.g., 30). Taken 

together, these ideas suggest an important role for categories and concepts in the storage 

of the visual details of objects, an important area of future research.   

Another possible distinction in the organization of memory is between memory 

for objects, memory for collections of objects, and memory for scenes.  While some work 

has shown that it is possible to remember details from scenes drawn from the same 

category (15), future work is required to examine massive and detailed memory for 

complex scenes. 
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Familiarity versus recollection 

 

 The literature on long-term memory frequently distinguishes between two types 

of recognition memory: familiarity, the sense that you have seen something before; and 

recollection, specific knowledge of where you have seen it (31). However, there remains 

controversy over the extent to which these types of memory can be dissociated, and the 

extent to which forced-choice judgments tap into familiarity more than recollection or 

vice versa (see 32 for a review). In addition, while some have argued that perceptual 

information is often more associated with familiarity and conceptual information is 

associated more with recollection (e.g., 31), this view also remains disputed (32, 33). 

Thus, it is unclear the relative extent to which observers‟ choices in the current two-

alternative forced choice tests were based on familiarity versus recollection. Given the 

perceptual nature of the details required to select the studied item, it is likely that 

familiarity plays a major role, and that recollection aids recognition performance on the 

subset of trials in which observers were explicitly aware of the details that were most 

helpful to their decision (a potentially large subset of trials, based on self-reports). 

Importantly, however, whether observers were depending on recollection or familiarity 

alone, the stored representation still requires enough detail to distinguish it from the foil 

at test.   Our main conclusion is the same whether the memory is subserved by familiarity 

or recollection: observers encoded and retained many specific details about each object. 

 

Constraints on models of object recognition and categorization 

 Long-term memory capacity imposes a constraint on high-level cognitive 

functions and on neural models of such functions. For example, approaches to object 
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recognition often vary by either relying on brute force online processing or a massive 

parallel memory (for review see 34, 35).  The present data lend credence to object 

recognition approaches that require massive storage of multiple object viewpoints and 

exemplars (36-39). Similarly, in the domain of categorization, a popular class of models, 

so-called exemplar models (40), have suggested that human categorization can best be 

modeled by positing storage of each exemplar that is viewed in a category. The present 

results demonstrate the feasibility of models requiring such large memory capacities. 

In the domain of neural models, the present results imply that visual processing 

stages in the brain do not, by necessity, discard visual details. Current models of visual 

perception posit a hierarchy of processing stages that reach more and more abstract 

representations in higher-level cortical areas (35, 41). Thus to maintain featural details, 

long-term memory representations of objects might be stored throughout the entire 

hierarchy of the visual processing stream, including early visual areas, possibly retrieved 

on demand via a feedback process (41, 42). Indeed, imagery processes, a form of 

representation retrieval, have been shown to activate both high-level visual cortical areas 

and primary visual cortex
 
(43). In addition, fMRI studies have indicated that a relatively 

mid-level visual area, the right fusiform gyrus, responds more when observers are 

encoding objects for which they will later remember the specific exemplar, compared to 

objects for which they will later remember only the gist (44). Understanding the neural 

substrates underlying this massive and detailed storage of visual information is an 

important goal for future research and will inform the study of visual object recognition 

and categorization. 
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Conclusion 

 

 The information capacity of human memory plays an important role in cognitive 

and neural models of memory, recognition, and categorization, as models of these 

processes implicitly or explicitly make claims about the level of detail stored in memory. 

Detailed representations allow more computational flexibility because they enable 

processing at task-relevant levels of abstraction (24, 27), but these computational 

advantages tradeoff with the costs of additional storage. Therefore, establishing the 

bounds on the information capacity of human memory is critical to understanding the 

computational constraints on visual and cognitive tasks. 

The upper bound on the size of visual long-term memory has not been reached, 

even with previous attempts to push the quantity of items (4), or the present study‟s 

attempt to push both the quantity and fidelity.  Here we raise only the lower bound of 

what is possible, by showing that visual long-term memory representations can contain 

not only gist information but also details sufficient to discriminate between exemplars 

and states.   We think that examining the fidelity of memory representations is an 

important addition to existing frameworks of visual long-term memory capacity. While in 

everyday life we may often fail to encode the details of objects or scenes (7, 8, 17), our 

results suggest that under conditions where we attempt to encode such details, we are 

capable of succeeding. 
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Materials and Methods 

Participants 

 Fourteen adults (aged 20 – 35) gave informed consent and participated in the 

experiment. All of the participants were tested simultaneously, using computer 

workstations that were closely matched for monitor size and viewing distance.   

Stimuli 

 Stimuli were gathered using both a commercially available database (Hemera 

Photo-Objects, Vol. I & II) and internet searches using Google Image Search. Overall, 

2600 categorically distinct images were gathered for the main database, plus 200 paired 

exemplar images and 200 paired state images drawn from categories not represented in 

the main database.  The experimental stimuli are available on the authors‟ websites. Once 

these images had been gathered, 200 were selected at random from the 2600 objects to 

serve in the novel test condition. All participants were thus tested with the same 300 pairs 

of novel, exemplar and state images.  However, the item seen during the study session 

and the item used as the foil at test were randomized across participants.   

Procedure 

 Study Blocks. The experiment was broken up into ten study blocks of 

approximately 20 minutes each, followed by a 30 minute testing session. Between blocks 

participants were given a five minute break, and were not allowed to discuss any of the 

images they had seen. During a block, approximately 300 images were shown, with 2896 

images shown overall: 2500 new and 396 repeated images. Each image (subtending 7.5 

by 7.5 degrees of visual angle) was presented for 3 seconds, followed by an 800 ms 

fixation cross.   



Page 16 of 22  

 Repeat Detection Task. To maintain attention and to probe online memory 

capacity, participants performed a repeat detection task during the ten study blocks.  

Repeated images were inserted into the stream such that there were between 0 and 1023 

intervening items, and participants were told to respond using the spacebar anytime that 

an image repeated throughout the entire study period.  They were not informed of the 

structure of the repeat conditions. Participants were given feedback only when they 

responded, with the fixation cross turning red if they had incorrectly pressed the space 

bar (false alarm) or green if they had correctly detected a repeat (hit), and were given no 

feedback for misses or correct rejections. 

 Overall, 56 images were repeated immediately (1-back), 52 were repeated with 1 

intervening item (2-back), 48 were repeated with 3 intervening items (4-back), 44 were 

repeated with 7 intervening items (8-back), and so forth, down to 16 repeated with 1023 

intervening items (1024-back). Repeat items were inserted into the stream uniformly, 

with the constraint that all of the lengths of n-backs (1-back, 2-back, 4-back,...1024-back) 

had to occur equally in the first half of the experiment and the second half.  This ensured 

that fatigue would not differentially affect images that were repeated from further back in 

the stream. Due to the complexity of generating a properly counterbalanced set of 

repeats, all participants had repeated images appear at the same places within the stream. 

However, each participant saw a different order of the 2500 objects, and the specific 

images repeated in the n-back conditions were also different across participants. Images 

that would later be tested in one of the three memory conditions were never repeated 

during the study period.   

 Forced Choice Tests. After a 10 minute break following the study period, we 

probed the fidelity with which objects were remembered.  Two items were presented on 
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the screen, one previously seen old item, and one new foil item. Observers reported 

which item they had seen before in a two-alternative forced choice task. 

Participants were allowed to proceed at their own pace, and were told to emphasize 

accuracy, not speed, in making their judgments. The 300 test trials were presented in a 

random order for each participant, with the three types of test trials (novel, exemplar and 

state) interleaved. The images that would later be tested were distributed uniformly 

throughout the study period. 
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Figure Legends 

 

Figure 1: Example test pairs presented during the two-alternative forced choice task for 

all three conditions (novel, exemplar, state). The number of observers reporting the 

correct item is shown for each of the depicted pairs. The experimental stimuli are 

available on the authors‟ websites. 

Figure 2: Memory performance for each of the three test conditions (novel, exemplar, 

state) is shown above.  Error bars represent the s.e.m. The dashed line indicates chance 

performance.  
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