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Abstract

Traditionally, texture perception has been studied using artificial textures made of random dots or repeated shapes. At the same

time, computer algorithms for natural texture synthesis have improved dramatically. We seek to unify these two fields through a

psychophysical assessment of a particular computational model, providing insight into which statistics are most vital for natural

texture perception. We employ Portilla and Simoncelli�s texture synthesis algorithm, a parametric model that mimics computations

carried out in human vision. We find an intriguing interaction between texture type (periodic, structured, or 3-D textures) and image

statistics (autocorrelation function and filter magnitude correlations), suggesting different representations may be employed for these

texture families under pre-attentive viewing.
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1. Introduction

The visual perception of textures has been an area of

interest spanning a wide variety of disciplines from art
to computer science. The fields of computer vision, per-

ception, and graphics have each made significant contri-

butions to our overall understanding of texture

perception and representation, albeit in quite different

ways.

1.1. Psychophysical studies of texture perception

Psychophysicists are of course most interested in

what representations and rules the human visual system

uses to process textures. In this endeavor, Bela Julesz

stands out as one the earliest and arguably most impor-

tant contributors to the field. The ‘‘Julesz conjecture’’
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(Julesz, 1962) represents one of the first hypotheses con-

cerning what image statistics were represented in the hu-

man visual system. The original hypothesis was that

textures differing only in third-order or higher pixel sta-
tistics would be indiscriminable by human observers.

This early version of the conjecture was proved false

by Julesz himself years later (Julesz, 1975) and the

hypothesized ‘‘bar’’ for human discriminability of tex-

tures has been pushed past third-order statistics (Julesz,

Gilbert, & Victor, 1978) to a possible resting place at

fourth-order statistics (Klein & Tyler, 1986). However,

recent working analyzing the formalism of creating ex-
treme-order textures (Tyler, 2004a) suggests that the

global statistics should not be the sole focus of texture

research. Local processes that human observers use to

compare different texture samples may be of more

importance (Tyler, 2004b). Indeed, most recent models

of texture perception rely on linear filter banks rather

than higher-order pixel statistics (Malik & Perona,

1990).
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Many studies concerned with the psychophysics of

human texture perception make use of random-dot

textures or structured textures composed of repeated

symbols like oriented bars, or T, L and X-shaped ele-

ments. When using artificial textures such as these, pix-

el-level texture analysis and simple filter-based strategies
are relevant tools. Though useful as a model world for

examining texture processing strategies, these artificial

textures are not representative of the set of natural tex-

tures we encounter in everyday experience. Indeed, these

textures violate key features of natural images, specifi-

cally the redundancy of natural images (Attneave,

1954; Barlow, 1961). Human observers have implicit

knowledge of this redundancy (Kersten, 1987), suggest-
ing that it may be better to study natural textures that

match statistical properties of the real world. Natural

images have been used to study what higher-level image

qualities are used to group textures along salient dimen-

sions (Rao & Lohse, 1996), but little effort has been

made to examine low-level representations of photo-

graphic textures using psychophysical methods.

1.2. Analysis and synthesis of photographic textures

Machine vision research regarding texture analysis

and synthesis is a useful body of work to consider as a

means of resolving this difficulty. All of these algorithms

share the goal of using small samples of some original

texture as a starting point for the reconstruction of arbi-

trarily large amounts of the same texture. The end result
should ideally be indistinguishable from the true texture,

although no algorithm can truly remove all artifacts of

the synthesis process. Rather than random-dot textures,

these algorithms are most often applied to natural tex-

tures and have been very successful at creating convinc-

ing images for graphics applications. Given that these

algorithms operate on natural textures, we will consider

them as a useful vehicle for studying the perception of
such images by human observers.

The quality of the final reconstruction produced by

any of these algorithms informs us as to the utility of

both the representation used for the original texture

and the process by which that representation is used to

generate novel images. However, for us to truly feel con-

fident in relating the computational procedure used for

texture synthesis to human perceptual processes it is
helpful if the algorithm uses representations employed

by the human visual system. For this reason, several tex-

ture synthesis strategies that produce strikingly good

reproductions of target textures will not be considered

here. For example, ‘‘image quilting’’ strategies (Efros

& Freeman, 2001) have no true ‘‘representation’’ of a

texture, in that patches of the original image are reas-

sembled to make the synthetic version. In a sense, the
original image is the only representation of the texture

used. Likewise, pixel-growing strategies (Efros & Leung,
1999) are equally problematic in that they represent tex-

ture in terms of the distribution of individual pixels in

the original image. Synthesis requires a time-consuming

search process through the sample provided for analysis.

While both of these procedures are extremely useful for

graphics applications, we do not believe that they easily
relate to human vision.

To achieve a deeper insight as to what statistics are

important for the visual processing of natural textures,

we turn instead to parametric models of texture analysis

and synthesis. These models utilize the idea that filters

resembling those found in early visual cortex provide

information useful for texture segmentation and classifi-

cation (Bergen & Adelson, 1988; Bergen & Adelson,
1986). Texture analysis by such filters has proven quite

successful at modeling pre-attentive segmentation per-

formance (Malik & Perona, 1990). Filter-based analysis

has also contributed to a formal definition of Julesz�
‘‘textons’’ (Julesz, 1981) in terms of clustered filter out-

puts (Malik, Belongie, Leung, & Shi, 2001).

In terms of texture synthesis, Heeger and Bergen�s
model (Heeger & Bergen, 1995) demonstrated the utility
of ‘‘steerable filters’’ (Simoncelli & Freeman, 1995) for

the synthesis of stochastic textures that lacked global

structure or distinct textural sub-regions. Distributions

of filter coefficients at multiple scales and orientations

are extracted from a target image, and a synthetic image

can be created by forcing a white-noise field to have

matching distributions. The resulting images are quite

convincing for some kinds of textures, but fail to capture
long-range relationships or inhomogeneous textures.

Despite these limitations, this model fulfills two impor-

tant criteria to be useful as a tool for studying human

texture perception. It can be used to synthesize natural

textures, and the representation it relies upon (oriented

derivative-of-gaussian filters) is motivated by receptive

fields found in early stages of visual processing. For

the current study, we shall employ a model which is sim-
ilar to Heeger and Bergen�s, but which is able to produce

high-quality syntheses across a range of different kinds

of texture.

1.3. The model of Portilla and Simoncelli

Since its initial presentation, the basic Heeger–Bergen

model has been improved in many ways. In particular,
to overcome the inability of the original model to repro-

duce extended contours and other large-scale structures

in the target texture, additional constraints across scales

and orientations were introduced by Portilla and Simon-

celli (Portilla & Simoncelli, 1999; Portilla & Simoncelli,

2000; Simoncelli & Portilla, 1998; Simoncelli, 1997).

We opt in the current study to use their model as a basis

for exploring the necessary and sufficient statistics for
the successful synthesis of various kinds of photographic

texture. There are several reasons for this choice. First,
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Portilla and Simoncelli�s model produces very high-

quality images. Second, synthesis can be achieved rela-

tively quickly, meaning a library of synthesized textures

can be created in a reasonable time frame. This is in con-

trast to the FRAME model of texture synthesis (Zhu,

Wu, & Mumford, 1996, 1997), which is very powerful,
but slower. Finally, the implementation of the algorithm

allows for ‘‘lesioning’’ of the code to remove certain

parameters from the synthesis process. This last aspect

of the model makes it particularly attractive for our pur-

poses, as it allows us to synthesize textures lacking cer-

tain statistical constraints. We may then assess how

well the final image approximates the target texture.

The Portilla–Simoncelli model utilizes four large sets
of parameters to generate novel texture images from a

specified target. In all cases, a random-noise image is al-

tered such that its distributions of these parameters

match those obtained from the target image. The first

of these parameter sets is a series of first-order con-

straints (marginals) on the pixel intensity distribution

derived from the target texture. The mean luminance,

variance, kurtosis and skew of the target are imposed
on the new image, as well as the range of the pixel val-

ues. The skew and kurtosis of a low-resolution version

of the image is also included in this set. Second, the local

autocorrelation of the target image�s low-pass counter-

parts in the pyramid decomposition is measured (coeff.

corr), and matched in the new image. Third, the mea-

sured correlation between neighboring filter magnitudes

is measured (mag. corr). This set of statistics includes
neighbors in space, orientation, and scale. Finally,

cross-scale phase statistics are matched between the

old and new images (phase). This is a measure of the

dominant local relative phase between coefficients with-

in a sub-band, and their neighbors in the immediately

larger scale. Portilla and Simoncelli report on the utility

of each of these parameter subsets in their description of

the model, but offer no clear perceptual evidence beyond
the visual inspection of a few example images. The cur-

rent study aims to carry out a true psychophysical

assessment, in the hopes that doing so will more clearly

demonstrate which statistics are perceptually important

for representing natural textures.

We present the results of two experiments, designed

to test the aforementioned parameter subsets value in

producing textures that are indiscriminable from the tar-
get texture under pre-attentive conditions. We note that

this is markedly different than analyzing the resulting

images under full scrutiny. This is because the kinds of

artifacts and errors that may seem glaring given an

attentive analysis of an image may be invisible under

pre-attentive conditions. Our strategy is to first produce

synthetic textures that are not matched to the target tex-

ture for one or more of the parameter families previous-
ly mentioned. We then determine how discriminable

synthetic textures are from original textures under brief
presentation. In so doing, we explicitly assume a local

windowing model of texture processing similar to a

recently proposal of Tyler�s (Tyler, 2004b). We compare

discriminability of ‘‘lesioned’’ textures to the discrimina-

bility of synthetic textures created using the full set of

statistical parameters in the model. This allows us to
determine how much each parameter subset contributes

to the final synthesis. Further, we break down our target

textures into three families (‘‘periodic’’, ‘‘structured,’’

and ‘‘3-D asymmetric’’ textures) to see whether or not

different statistics are needed to convincingly synthesize

specific categories of images.
2. Methods

2.1. Subjects

A total of 16 subjects participated in the two experi-

ments described here, eight in each of our two experi-

ments. Subject age ranged from 19 to 27 years, and all

subjects had normal or corrected-to-normal vision.

2.2. Stimuli

Original textures—18256 · 256 texture samples were

chosen from a set of textures available via the NYU

Laboratory for Computational Vision (http://

www.cns.nyu.edu/~eero/software.html). Several textures

are Brodatz images (Brodatz, 1996) while the remainder
are original photographs collected by the NYU labora-

tory. The images were selected to conform to three pre-

conceived visual categories, pseudoperiodic, structured,

and 3-D textures with asymmetric luminance gradients.

The first two categories were selected because both

the presence of periodicity and the presence of struc-

tured elements have been suggested as useful criteria

for classifying textures in the computer vision literature
(Haralick, 1979; Portilla, Navarro, Nestares, & Tabern-

ero, 1996). While there are four classes of texture that

can be obtained by crossing the presence or absence of

periodicity with the presence or absence of structured

elements, we have opted to include only two of those

classes here (periodic and non-structured as well as

non-periodic and structured textures). Of the four possi-

bilities available to us, we believe that the two we have
selected are most likely to require different statistics

for successful synthesis. For our purposes, we will con-

sider pseudoperiodic textures to be images based on a

spatially regular repeated pattern, which may vary

slightly across the image. Structured textures are defined

as those textures composed of discrete elements that are

not repeated in a predictable way across the image.

The third category of textures we shall examine, 3-D
textures with asymmetric luminance gradients, is includ-

ed specifically to examine how important cross-scale

http://www.cns.nyu.edu/~eero/software.html
http://www.cns.nyu.edu/~eero/software.html
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phase information is to pre-attentive texture perception.

‘‘3-D asymmetric’’ textures are images that contain

strong lighting effects which suggest depth. In particular,

these images contain luminance gradients of the same

sign and similar orientation across the image surface.

These image conditions make cross-scale phase statistics
very relevant for viewing synthetic images with scrutiny,

and we wish to explore if this dependency holds for pre-

attentive viewing. Previous studies have indicated that

local phase differences are not pre-attentively discrimi-

nable, but primarily use very simple stimuli to evaluate

this claim (Malik & Perona, 1990; Rentschler, Hubner,

& Caelli, 1988; Sun & Perona, 1996). It may be the case

that in natural images local phase relationships provide
useful information under pre-attentive viewing. We note

that though this last set of textures looks very heteroge-

neous, this does not necessarily mean that the human

visual system does not use a common statistical mecha-

nism to represent them.

All of our target textures, grouped into the three fam-

ilies described here, are displayed in Fig. 1.

‘‘Lesioned’’ textures—Five synthetic versions of each
original texture image were created using Portilla and

Simoncelli�s algorithm. The first four images were

created by choosing to ignore one family of statistical

measurements taken from the original image while

performing the synthesis procedure. In order, marginal

statistics, raw autocorrelation statistics, filter magni-

tudes, and cross-scale phase measurements were

removed from consideration one at a time for each con-
dition. The fifth category of synthesized textures was
Fig. 1. The collection of textures used to create synthetic images for Experime

(We consider text pseudoperiodic because of the even spacing of rows.) The

elements but lack strong periodicity or global structure. The bottom row co
created by synthesizing each texture using the full set

of statistical constraints. Each synthesized image was

256 · 256 pixels in size, using parameters extracted from

a 192 · 256 pixel patch taken from the original texture.

These slightly smaller patches were used to remove the

text credits that appeared in the lower left corner of
some images. Examples of the synthesized textures cre-

ated from a particular target texture are displayed in

the top row of Fig. 2.

‘‘Pair-wise impoverished’’ textures—For Experiment

2, we create four new categories of texture images by

synthesizing texture patterns using the marginal statis-

tics alone, and also the marginal statistics plus each of

the three remaining parameter subsets added in one at
a time. While the images in Experiment 1 allow us to

discuss the necessity of each subset of parameters for

texture synthesis, these images are designed to give

us insight as to the sufficiency of these subsets for suc-

cessful texture reconstruction. The reason for using

‘‘pair-wise’’ images rather than synthesizing textures

using each parameter subset in isolation is that in

inspecting the top-left image of Fig. 2, it is obvious
that those images lacking the same first-order statistics

as their parent textures are strikingly different from the

other lesioned images. This is the case because encap-

sulated in those first-order measurements are highly

salient global image properties like overall contrast

and mean luminance of the image. From this, we ex-

pect that first-order properties will certainly prove to

be necessary for good synthesis in Experiment 1. This
means that testing sets of images that lack these prop-
nts 1 and 2. The top row contains textures that have strong periodicity.

middle row contains textures that are composed of repeated structural

ntains textures with asymmetric lighting effects suggesting depth.



Fig. 2. (Top row) ‘‘Lesioned’’ texture images created using the Portilla and Simoncelli algorithm. Synthesized textures from our original images were

created using either the full set of statistical parameters (far right) or using all but one subset of those parameters. From left to right, the images in

this figure were constructed without explicit matching of first-order constraints (mean, range, variance, kurtosis and skew), sub-band coefficient

correlation, sub-band magnitude correlation, and cross-scale local phase information. (Bottom row) ‘‘Pair-wise’’ lesioned images created by including

the first-order statistics in all synthetic textures with the addition of: (from left to right) nothing additional, sub-band coefficient correlation, sub-band

magnitude correlation, cross-scale phase information, and all parameters in the Portilla and Simoncelli algorithm.
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erties will be relatively useless. Instead, we include

these parameters in all cases, allowing us to test the

first-order properties themselves for sufficiency as well

as the remaining parameter subsets (with the caveat

that pixel distributions are always matched). Examples

of these synthesized textures are displayed in the bot-

tom row of Fig. 2.

2.3. Procedure

Subjects were seated approximately 100 cm from a

1700 Dell Ultrasharp monitor. All stimulus display and

response recording functions were controlled via the

Matlab Psychophysics Toolbox (Brainard, 1997; Pelli,

1997).
In both experiments, subjects were to perform a

3AFC ‘‘oddball’’ task, in which three unique texture

patches were presented on each trial. The ‘‘oddball’’

image was drawn from a random location within either

the original texture or the synthesized version of that

texture. On each trial, two non-overlapping distractor

patches were then drawn from either the synthetic or

original image, respectively. By randomly sampling
our patches from the larger images at each trial, we have

access to a very large set of possible stimuli, making the

memorization of individual patches impossible. Using

two non-overlapping distractors on each trial also en-

sures that common features within the two distractor

images cannot contribute to task performance. Finally,

given that the oddball image on each trial can be either

real or synthetic, subjects must compare all three images
to each other to perform well on each trial. In Experi-
ment 1, we will be looking for cases in which the remov-

al of a statistical constraint improves detection of the

‘‘oddball’’ image. This will indicate that the ‘‘lesioned’’

constraint carried information that is necessary for a

good synthetic image. Conversely, in Experiment 2, we

will be looking for cases where the imposition of a sta-

tistical constraint results in poor detection of the odd-
ball. This will indicate that the included constraints

carried sufficient information for a good synthetic

image.

Each image patch was windowed with a circular

mask to remove any orientation-specific interactions be-

tween the contours of the image frame and contours

within the texture itself. Subjects were not familiarized

with the textures previously, and all three texture patch-
es in a given trial were distinct images. These measures

were taken to ensure that neither high-level information

nor pictorial matching strategies could contribute to

subjects� performance.

On each trial, the three images were displayed at the

vertices of an equilateral triangle such that the distance

between each image and central fixation was approxi-

mately 3.5� of visual angle. Each stimulus was approxi-
mately 2� of visual angle in diameter (approximately

64 pixels/degree), and the entire stimulus triad was onsc-

reen for 250 ms and then removed. Responses were col-

lected after the stimulus triad disappeared. Subjects

indicated the location of the oddball texture patch via

the ‘‘1’’, ‘‘2’’, and ‘‘3’’ keys to indicate left, top, and right

respectively. Response time was not recorded, and no

feedback was provided to the subjects. Presentation or-
der was randomized for each subject.
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Subjects completed 144 trials per ‘‘lesion’’ condition

for each of our three texture families for a total of

2160 trials. Breaks were scheduled every 720 trials.
3. Results

Experiment 1– In our first experiment, we are looking

for evidence that subsets of statistical constraints collect-

ed by the Portilla and Simoncelli algorithm are differen-

tially important for the successful synthesis of our three

texture families. In particular, this experiment assesses

the degree to which each subset of parameters is neces-

sary for the synthesis of each type of texture by remov-
ing one set of constraints at a time.

A 2-way ANOVA (with repeated measures) was run

on the number of accurate responses. The data revealed

a highly significant of lesioning condition (p < 10�4) as

well as a highly significant interaction between texture

category and lesion (p < 10�5). There was no main effect

of texture category (p > 0.4).

In Fig. 3, we see that as we predicted the first-order
statistics of our texture distributions are clearly neces-

sary for successful synthesis. Subjects are at ceiling at

detecting the ‘‘oddball’’ texture when these constraints

are removed. Further, the interaction between lesion

and texture category appears to be driven by the differ-

ential importance of raw coefficient correlation and
Fig. 3. Plot of the average performance on the oddball detection task

as a function of both texture category and texture lesion (mean values

±1 standard error across subjects). Greater accuracy at oddball

detection indicates greater necessity of the lesioned statistical con-

straints. Note both the clear importance of first-order statistics at left,

as well as the interaction between the necessity of coefficient and

magnitude correlation for periodic, structured, and asymmetric

textures.
magnitude correlation for our three families of textures.

To be more specific, pseudoperiodic textures seem to

rely relatively equally (and weakly) on both of these sets

of parameters, given that the removal of each does not

cause a large increase in the number of correct detec-

tions. In contrast, the magnitude correlation statistics
are clearly quite necessary for successful synthesis of

structured textures, while the coefficient correlations

seem to contribute almost nothing to the full synthesis.

This pattern of results is also observed with the 3-D

asymmetric textures, although the effect of removing

the magnitude correlations is less pronounced. We note

that the constraints on cross-scale phase do not appear

to be necessary for any of our three texture categories,
indicating that under pre-attentive conditions these con-

straints matter very little.

To confirm this assessment of the results, we conduct-

ed post-hoc Tukey–Kramer tests within each texture

category between each of the 4 ‘‘lesion’’ conditions

and the ‘‘full set’’ condition. We find that for pseudope-

riodic textures, only the removal of the first-order statis-

tics produces a rate of oddball detection significantly
greater than the ‘‘full set’’ images (p < 0.05). However,

for the structured textures and the 3-D asymmetric tex-

tures, we find that both the removal of the first-order

statistics and the removal of the magnitude correlation

statistics produce rates of oddball detection significantly

greater than that of the ‘‘full set’’ textures (p < 0.01, and

p < 0.05 respectively).

Experiment 2—In this second experiment, we are
testing the sufficiency of both first-order statistics in

isolation and pair-wise combinations of first-order infor-

mation and the remaining three parameter subsets for

producing successful synthetic texture images. In these

results we will be looking for cases where the inclusion

of parameter subsets gives rise to low rates of oddball

detection. This will indicate that the subsets included

may be sufficient for producing synthetic textures viewed
under pre-attentive conditions.

As in Experiment 1, we ran a 2-way ANOVA with

repeated measures on subjects� accuracy, with lesion

condition and texture category as factors. As before,

we find no effect of texture category (p > 0.3) but a sig-

nificant effect of lesion condition (p < 10�5) and a signif-

icant interaction between these two factors (p < 0.01).

We note in Fig. 4 that the inclusion of first-order
statistical constraints alone results in a rate of oddball

detection that is at ceiling. This indicates that though

these parameters are necessary for synthesis, they are

certainly not sufficient. Of more interest however, is

the relationship between the other three parameter sub-

sets. Specifically, we notice that for all three of our tex-

ture families magnitude correlation proves to be quite

useful for synthesis, producing rates of oddball detec-
tion comparable to the ‘‘full set’’ images. Raw coeffi-

cient correlation, by contrast, appears to only be



Fig. 4. Rates of oddball detection for all three texture families as a

function of statistics included in the synthesis process (mean values ±1

standard error across subjects). Poorer accuracy at oddball detection

indicates greater sufficiency of the included statistical constraint. We

note that both marginal statistics alone, and the pair-wise inclusion of

marginal and cross-scale phase constraint provide poor syntheses. In

contrast, magnitude correlations and marginal statistics together

provide for relatively good synthesis of all three textures. The raw

coefficient correlation is only weakly sufficient, and appears to

contribute most effectively to pseudoperiodic and asymmetric textures.
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weakly sufficient, and more useful for pseudoperiodic
and asymmetric textures than structured images. Final-

ly, we also note that oddball detection rates are very

high when cross-scale phase statistics are included with

the first-order measurements. For structured textures,

this rate is somewhat lower than ceiling (perhaps an

indication that cross-scale phase provides some small

amount of useful information), but overall demonstra-

tive of the insufficiency of phase information for tex-
ture synthesis.

As before, post-hoc Tukey–Kramer tests were run to

confirm our intuitions regarding the interaction of inclu-

sion condition and texture family. In comparing the

‘‘full set’’ responses to the other conditions within tex-

ture families, we find that for structured and 3-D asym-

metric textures three lesion conditions differ significantly

(p < 0.05) from the ‘‘full set’’ rate of oddball detection,
with the sole exception being magnitude correlation.

For pseudoperiodic textures, we find that all conditions

differ significantly (p < 0.05) from the ‘‘full set’’. From

inspection of the graph, raw coefficient correlation could

be considered weakly sufficient in spite of this analysis.

However, it is our belief that the efficacy of first-order

statistics and magnitude correlation for all of our tex-

tures is most clearly indicated by this experiment. For
all three texture families, images that incorporate these

statistics generate the lowest rates of oddball detection.
Moreover, these rates do not significantly differ from

‘‘full set’’ detection rates in two cases.
4. Discussion

We have found in our pre-attentive discrimination

task that the necessity of various statistical parameters

for high-quality synthesis is different for pseudoperiod-

ic, structured, and 3-D asymmetric texture images. We

find that first-order pixel statistics such as the mean,

variance, and range of luminance values are vitally

important for creating perceptually matched textures

from any target image. This is hardly surprising given
how easily human observers can discriminate between

different brightness and contrast levels. Of more inter-

est is the reliance of each texture family on autocorre-

lation and filter magnitude correlation statistics.

Periodic textures demonstrate no strong need for either

of these measures, but rather rely weakly and almost

equally on both. Structured textures, by comparison,

appeared to rely quite heavily on the magnitude corre-
lation statistics, while demonstrating no need for pres-

ervation of the local autocorrelation statistics. 3-D

asymmetric textures inhabit a middle ground between

these two extremes, relying significantly on magnitude

correlation (though less so than structured textures)

and showing little need for preservation of the raw

autocorrelation.

None of our texture classes appeared to rely heavily
on cross-scale phase statistics for synthesis. This sug-

gests that these measurements may only be important

for texture images that undergo scrutiny, or classes of

texture not represented here. It is our belief that this lat-

ter possibility is more likely. We selected the 3-D asym-

metric textures specifically with the hope of finding a

reliance on phase statistics, but this does not mean that

another texture class not examined here does not make
use of these measurements. Also, task demands may

unfairly limit the extent to which both these sets of sta-

tistics can be extracted by the visual system. Slightly

longer viewing times might make the errors brought

on by these lesions more apparent, while still remaining

in the realm of pre-attentive texture perception.

In terms of the sufficiency of our parameter subsets,

we find that preserving only first-order measurements
of the pixel distribution is clearly not enough to create

a convincing synthetic image. Again, this is not surpris-

ing given that the human visual system is known to have

strong representations of higher-order features (like edg-

es) that will not be preserved through balancing only

pixel-based statistics. Also, as we might expect from

the results of Experiment 1, cross-scale phase statistics

combined with proper first-order measurements result
in extremely poor syntheses. Again, it is the imposition

of the autocorrelation and coefficient magnitude
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constraints that prove most useful in this task. Autocor-

relation statistics prove weakly sufficient for pseudoperi-

odic and asymmetric textures, but comparatively less

effective for producing structured textures. When we in-

clude magnitude correlation statistics instead, two of

our texture categories (structured and 3-D asymmetric)
give rise to detection rates that are not statistically differ-

ent from those obtained with the full set of constraints.

We note that pseudoperiodic textures are also well-spec-

ified when only magnitude correlations and first-order

properties are preserved, though detection rates are still

above ‘‘full set’’ rates. This is in good agreement with

the data from Experiment 1, in that both structured

and 3-D asymmetric textures seem to be well-represent-
ed by magnitude correlations, while making less use of

the raw autocorrelation. Also as before, it appears that

pseudoperiodic textures make use of these two statistics

relatively equally, and to a lesser degree than either of

the other two texture categories.

The necessity and insufficiency of first-order image

properties is not a new or surprising contribution. Of

more importance is the perceptual role of cross-scale
phase statistics and the magnitude correlations intro-

duced by Portilla and Simoncelli. In the first case, we

point out that neither the inclusion or absence of

cross-scale phase information affected the synthesis pro-

cess in any way that indicated this information was of

perceptual use under pre-attentive viewing. This sup-

ports results obtained with mirror-image gabor-like

stimuli (Malik & Perona, 1990; Rentschler et al.,
1988), suggesting that both for schematic and natural

stimuli local phase statistics do not contribute to pre-at-

tentive processing. In the second case, we note that the

magnitude correlations appear to be extremely impor-

tant for the perceptual integrity of structured and 3-D

asymmetric textures under pre-attentive conditions. It

is quite interesting that these statistics are so important,

as they suggest predominantly local measures (in space,
orientation, and scale) support the perception of quite

complex textures. Indeed, for these two texture families,

matching only these parameters and first-order proper-

ties one can create synthetic images that are not of

significantly lower quality than those made with the en-

tire set of constraints.

Also noteworthy is the fact that none of the parameter

subsets examined here proved ‘‘necessary’’ for the syn-
thesis of pseudoperiodic textures, save for first-order pix-

el statistics. This suggests that these textures might be

represented by statistics that are more evenly distributed

across the subsets considered here. This is somewhat at

odds with previous results concerning periodic textures,

specifically with regard to the importance of the autocor-

relation function (Fujii, Sugi, & Ando, 2003). However,

pre-attentive viewing of natural textures may prove quite
different from viewing the same images with scrutiny.

Importantly, one should not conclude from our results
that pseudoperiodic textures are not well-represented

by the statistics utilized in the Portilla–Simoncelli model.

Rather, the information for synthesizing such textures is

not distributed in a heavily asymmetric way with regard

to the four parameter subsets described here.

There are several additional caveats that must be
raised, as well. The first of these concerns the discrimina-

bility of the ‘‘full set’’ images from the target textures. In

our 3AFC task, chance performance was 33%, a rate of

oddball detection lower than that displayed by all but a

few of our subjects. Overall, this indicates that even in

the most difficult condition our synthetic textures were

still reliably discriminable from their respective targets.

In all cases, we are only able to consider the necessity
and sufficiency of the parameters included relative to

this baseline. We do not see this as especially problemat-

ic, but it does indicate that there is still a fair amount of

work to be done as far as creating more powerful para-

metric texture synthesis algorithms. We are limited to

testing the statistical constraints imposed by this partic-

ular model, and though they seem both reasonable and

useful we must remember that there remains an infinite
number of image statistics that may prove useful in the

future.

Second, we must mention that the sets of statistics we

have considered in these experiments are not completely

independent. There are many examples of redundancy

between some of these sets, most notably between the

raw autocorrelation and the magnitude correlation (Por-

tilla & Simoncelli, 2000). This does not render our neces-
sity and sufficiency tests invalid, but it does alter how we

should interpret the data. For example, neither the raw

autocorrelation nor the magnitude correlation statistics

proved necessary for the synthesis of pseudoperiodic

textures. Naively, one might think that this implies that

both of these parameter subsets could be removed with-

out perceptual consequences. When we do so, however,

we find that the resulting synthetic image is quite poor.
We suggest therefore that these results be interpreted as

indicating only the relative contributions of each param-

eter subset, not an absolute record of which statistics

one should feel free to leave out when creating synthetic

textures.

Related to the redundancies between the parameter

subsets used here is a more serious concern regarding

our method for assessing necessity and sufficiency
through the use of ‘‘lesioned’’ textures. We have gener-

ated our stimuli by asking the Portilla–Simoncelli algo-

rithm to preserve some sets of statistics, while not

making any effort to preserve other sets. We have no

guarantee however, that the algorithm will not match

the ‘‘lesioned’’ statistics accidentally despite making no

explicit attempt to do so. If it is the case that some sta-

tistics are accidentally matched by the algorithm when
they are lesioned (while others are not), our interpreta-

tion of these results is potentially erroneous. Parameters
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determined to be ‘‘unimportant’’ in our necessity exper-

iment may instead simply be the victims of accidental

matching, rendering them as indiscriminable as images

synthesized using all of the parameters.

To determine if this has indeed occurred for the stim-

uli presented here, we present a brief analysis of the ex-
tent to which each ‘‘lesioned’’ statistic is accidentally

reconstructed. For three of our single lesion conditions

(raw autocorrelation, magnitude correlation, and phase)

we use a signal-to-noise utility provided with the Portil-

la–Simoncelli algorithm to measure parameter fidelity in

a synthetic texture relative to the original image. This

utility measures the SNR of each statistic set in a syn-

thetic image relative to the original image. We apply this
measure to our ‘‘lesioned’’ images and the ‘‘full set’’

images. By taking the difference in SNR between ‘‘full

set’’ and ‘‘lesioned’’ images, we can roughly assess how

well each statistic is numerically matched to the original

parameters when it is lesioned as compared to when it is

retained. When this difference is large, we can be rela-

tively certain that those statistics are not being matched

very well in the lesioned image. Conversely, when this
difference is very small, we must assume that the le-

sioned statistics are being well-matched.

The advantage of using a difference score between

lesioned and non-lesioned synthetic images is that it

allows us to put the different parameter subsets on

more equal footing. The SNR measure only reflects

the numerical difference between the parameters ob-

tained from the original image and those obtained
from the synthetic image. That said, if we are unaware

of how well these values are matched in the best cir-

cumstances (‘‘full set’’ synthesis) than this value has

little meaning. For example, imagine that the SNR

of one set of lesioned parameters is 3 dB and that of

another is 10 dB. This appears to indicate that the sec-

ond set of parameters is being well-matched acciden-

tally and the first is not. However, it may be the
case that this second set of parameters is simply easier

to match during the synthesis process. This would re-

sult in a high SNR relative to other parameters in all

the lesioned images, even if there is information being

lost when we fail to constrain these statistics. By using

a difference score, we are able to account for a base-

line shift such as this that might otherwise corrupt

our understanding of how much ‘‘damage’’ each lesion
does. That said, since the SNR is only a measure of

the numerical difference between two sets of numbers

there is a subtler issue concerning the relevant scale

for each parameter subset. We cannot say for sure

whether a difference score of 2 dB in SNR for one le-

sioned statistic is exactly equivalent to the same score

for another lesioned statistic. However, this measure

at least gives us an ability to talk about the extent
of numerical matching that is occurring for lesioned

statistics.
We only analyze the SNR differences for these three

lesion conditions because we believe that first-order sta-

tistics are being reliably lesioned by inspection of our

images. Further, the high rates of oddball detections

for these images support the successful lesioning of these

parameters. Since most of our interesting data comes
from the other three lesion conditions, we shall only in-

spect their SNR differences. In particular, we wish to

know if either the autocorrelation parameters or the

phase parameters are being accidentally reconstructed.

This would suggest that the reported inefficacy of these

parameters is due to an incomplete lesioning process

rather than perceptual processing. We also wish to see

if there are any interactions between SNR differences
and texture categories that would predict the interac-

tions we see in the oddball task. If so, this would suggest

that our effects are being driven by the weaknesses of the

lesioning procedure. If we see no interactions that mimic

the perceptual data, we can be more confident in our

behavioral data. The results of this analysis are dis-

played in Fig. 5.

We first note that in general the algorithm matches
non-lesioned parameters equally well in the full set con-

dition and each lesion condition, as evidenced by the

near-zero differences in SNR. Likewise, the statistics

that are ‘‘ignored’’ are never matched as well in the le-

sioned images as in the full syntheses, as evidenced by

the positive SNR differences. However, it is also imme-

diately apparent that when raw autocorrelation statistics

are lesioned, the relevant differences in SNR are numer-
ically smaller than in the other lesion conditions. This

may indicate that these statistics are well-matched even

when we ask the Portilla–Simoncelli algorithm to ignore

them, explaining in part the lack of strong necessity we

have observed for the raw autocorrelation statistics.

Even when lesioned, these statistics may be well-pre-

served, leading to synthetic images that are almost as

good as the ‘‘full set’’ images.
For the moment, we must allow the possibility that

the overall lack of any strong need for the autocorrela-

tion statistics in our experiments may reflect either vary-

ing efficacy of the lesioning procedure, or a real

perceptual phenomenon. This means that we must leave

open the possibility that these parameters may be more

vital to all of our texture categories than we have im-

plied here.
We note however, that the overall lack of a depen-

dency on phase is likely not caused by accidental preser-

vation of those statistics in the phase-lesion condition.

Phase SNR differences in this condition are numerically

large, suggesting that these measurements are not well

preserved during lesioning.

Further, there are no significant main effects of tex-

ture category or interactions between texture category
and the SNR differences within each set of lesioned

images (three 2-way ANOVAs, p > 0.3 in all tests). This



Fig. 5. Differences in SNR between ‘‘full set’’ images and ‘‘lesioned’’ images for raw autocorrelation, magnitude correlation, and phase lesions. We

include a measure of SNR difference for the raw autocorrelation parameters, all three subsets of the magnitude correlation parameters (spatial

neighbors, orientation neighbors, and scale neighbors), and the phase parameters. Raw autocorrelation-lesioned images (left), magnitude correlation-

lesioned images (middle), and phase-lesioned SNR differences (right) are all averaged within each texture family, and the mean SNR difference ±1

standard error is displayed. We note the lack of any main effects of texture category or interactions between texture family and statistics subset in any

of our three graphs. However, the raw autocorrelation graph indicates numerically smaller differences between the full set SNR and the lesioned SNR

relative to the other lesion conditions.
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suggests to us that the interactions we report in our data

are not predicted by ‘‘accidental matching’’. Future ef-

forts to put all lesioned images on some sort of percep-

tually equal footing would be extremely valuable to this

enterprise, however.

As a final note, we must reflect on whether we have

limited our scope too much by studying one particular
model of texture synthesis when there are so many pos-

sibilities to choose from. Do these experiments tell us

anything about texture processing beyond the limita-

tions of one particular computational model for creating

synthetic textures? We suggest that they do. Wavelet-like

representations of images are employed in numerous

computer vision applications, and the Portilla–Simon-

celli model makes use of them in principled ways. In par-
ticular, these experiments tell us what contributions

early vision might make to representing natural textures.

The different sets of ‘‘lesioned’’ statistics are no more

than different processing steps applied to the basic mea-

surement of multi-scale oriented contrast, and therefore

the Portilla–Simoncelli model helps us understand how

we might use the information in V1 to do useful work

for texture recognition. Of course, as models for synthe-
sis develop further, so too should psychophysical assess-

ment of those models continue in tandem.
5. Conclusions

We have used a parametric model of texture synthe-

sis as a tool for examining the necessity and sufficiency
of different statistical measures for the perceptual simi-

larity of texture images. We have found that different

requirements apply for periodic textures as opposed
to structured textures, notably in the need for autocor-

relation measurements and conditional histograms of

edge-like filter magnitudes. Cross-scale phase statistics

were found to be of little use under pre-attentive condi-

tions, while first-order pixel properties were demon-

strated to be vital for capturing global image

similarity. These results demonstrate the value of using
computational models for texture synthesis to address

perceptual questions regarding texture processing. It is

hoped that this may help to bridge the gap between

the communities of graphics, machine vision, and psy-

chophysical texture research. Moreover, the 3AFC task

presented here represents a modest contribution to-

wards the formulation of texture discrimination tasks

that make explicit the importance of local texture anal-
ysis in the human visual system.
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